On general bootstrap for a multidimensional empirical estimator of a continuous-time semi-Markov kernel with applications
Published in Journal of Nonparametric Statistics, 2018
S. Bouzebda, C. Papamichail and N. Limnios
The present paper introduces a general notion and presents results of bootstrapped empirical estimators of the semi-Markov kernels and of the conditional transition distributions for semi-Markov processes with countable state space, constructed by exchangeably weighting the sample. Our proposal provides a unification of bootstrap methods in the semi-Markov setting including, in particular, Efron’s bootstrap. Asymptotic properties of these generalised bootstrapped empirical distributions are obtained, under mild conditions by a martingale approach. We also obtain some new results on the weak convergence of the empirical semi-Markov processes. We apply these general results in several statistical problems such as the construction of confidence bands and the goodness-of-fit tests where the limiting distributions are derived under the null hypothesis. Finally, we introduce the quantile estimators and their bootstrapped versions in the semi-Markov framework and we establish their limiting laws by using the functional delta methods. Our theoretical results and numerical examples by simulations demonstrate the merits of the proposed techniques.