On general bootstrap for a multidimensional empirical estimator of a continuous-time semi-Markov kernel with applications

Published in Journal of Nonparametric Statistics, 2018

S. Bouzebda, C. Papamichail and N. Limnios

The present paper introduces a general notion and presents results of bootstrapped empirical estimators of the semi-Markov kernels and of the conditional transition distributions for semi-Markov processes with countable state space, constructed by exchangeably weighting the sample. Our proposal provides a unification of bootstrap methods in the semi-Markov setting including, in particular, Efron’s bootstrap. Asymptotic properties of these generalised bootstrapped empirical distributions are obtained, under mild conditions by a martingale approach. We also obtain some new results on the weak convergence of the empirical semi-Markov processes. We apply these general results in several statistical problems such as the construction of confidence bands and the goodness-of-fit tests where the limiting distributions are derived under the null hypothesis. Finally, we introduce the quantile estimators and their bootstrapped versions in the semi-Markov framework and we establish their limiting laws by using the functional delta methods. Our theoretical results and numerical examples by simulations demonstrate the merits of the proposed techniques.

Download paper here